
File Uploaders Vulnerabilities

HackPra
November 2012

Soroush Dalili
SecProject.com

 Web Application Security Researcher since
2006

 Finding vulnerabilities in my spare time:

 IIS Semi-Colon Problem, IIS ShortFile Scanner, ...

 My blog: http://soroush.secproject.com/blog/
 Twitter: @IRSDL
 Email: IRSDL at Yahoo dot com

http://soroush.secproject.com/blog/

 Introduction to Form-based File Upload
 File Upload Vulnerabilities
 Protections and Bypass Methods

Bonus zero days in examples!

Based on: http://osvdb.org , Keyword: File Upload
More info: http://goo.gl/NmxpM

http://osvdb.org/
http://osvdb.org/
http://goo.gl/NmxpM
http://goo.gl/NmxpM

1. Direct File system access and RCE
2. Placing backdoors or making it more vulnerable
3. Exploiting Local File Inclusion issues
4. Exploiting server side libraries
5. Exploiting server side monitoring tools
6. Uploading phishing pages
7. Hosting dangerous and/or malicious files
8. Hosting illegal contents
9. Denial of Service by consuming the resources
10. Denial of Service by manipulating the files
11. Damaging website reputation
12. …

 Easy way to put the files on the server
 Increase business efficiency
 Uses a simple web browser
 Sharing photos, videos, files, and so on
 Being used in most of the modern websites:
 Social Networks, Mail Systems, Shops,
 Content Management Systems, Forums,
 …

 The most common:

 Form-based File Upload in HTML (RFC 1867)

 Post Method

 Content-Type (enctype) = multipart/form-data

Others:
 PUT HTTP Method
 ActiveX
 Java Applets
 …

<form method="post" enctype="multipart/form-data"
action="upload.aspx">

File Name: <input type="file" name="myfile" />
<input type="submit" value="Upload" />
</form>

POST /samples/upload.aspx HTTP/1.1
Host: www.example.com
Content-Type: multipart/form-data; boundary=AB12
Content-Length: 1337

--AB12
Content-Disposition: form-data; name="myfile"; filename="test.txt"
Content-Type: text/plain

File Contents ...
--AB12--

RFC 1867

Specific Issues:
 Improper or no access control
 Arbitrary (Unrestricted) File Upload
 Overwriting critical files
 Path disclosure
 Directory Traversal
 Insecure Temporary File
+ Other web application vulnerabilities

 Group A:
 Admin level access needed (Specific users which

have been authorised by admin)

Authentication bypass vulnerabilities…

Client Side Attacks… CSRF , XSS
 Group B:
 No authentication needed

 Normal user can have access

“All the options are on the table!”

 External module/library, it is safe: Wrong!
 It is just an editor: Wrong!
 Bunch of images are harmless: Wrong!
 In-house applications are more vulnerable.
 Published vulns. in public apps:

 Year OSVDB.org Records

2012 194

2011 123

2010 123

2009 107

2008 145

 Restricted File Upload:

 Validation or other protections

▪ Can be bypassed?
 Unrestricted/Unprotected file upload:

 You can upload whatever you want!

▪ And NO access control?

▪Piece of cake!

Based on: http://exploit-db.com – total: 74 items
More info: http://goo.gl/NmxpM

http://exploit-db.com/
http://exploit-db.com/
http://exploit-db.com/
http://exploit-db.com/
http://goo.gl/NmxpM
http://goo.gl/NmxpM

 Changing the functionality
 Bypassing the protections
 Make the website vulnerable
 Denial of Service! Lame but possible
Famous sensitive files:
.htaccess, web.config, crossdomain.xml,
clientaccesspolicy.xml, global.asa, golbal.asax

 Exploit-DB ID: 17644
FCKeditor (Old Version) Protection bypass by
uploading a .htaccess file
Even x_test.gif could run as a php file!
 Better Exploitation:
Running a shell inside the .htaccess file
By “Eldar Marcussen” -
http://www.justanotherhacker.com

 Included libraries are not always safe
 File system and webserver are important
 Different method for path disclosure:
 File/Directory/Symlink already exists
 Filename is too long

▪ NTFS: 255 characters

 Forbidden characters or reserved words
▪ WinOS: “<>?|:*"” + Control Characters
▪ WinOS: CON, NUL, COM1, …

 Sensitive file system patterns
▪ NTFS ADS: “:$I30:$INDEX_ALLOCATION” or “::$BITMAP”

 Permission Denied

 GleamTech FileVista v4.6:
Uploading “test” as a file when we have a
directory with the same name:

 NTFS ADS:

 FolderName::$Index_Allocation

 Or

 FolderName:$I30:$Index_Allocation

Short Demo: File - YouTube

FolderCreation.mp4
http://www.youtube.com/v/Ws2JrZG679Q?version=3&hl=en_US&rel=0&vq=hd720

 Modern browsers hide the local path:

Note: Anything before the last “/”
or “\” in filename is usually ignored
by the web application
but it needs to be tested!

 Usually File Uploaders have destination
parameter(s)!
 Can accept an absolute path? Try these:

▪ “C:\”, “\\127.0.0.1\c$\”, “file:///c:\\”,
“\\.\GLOBALROOT\Device\HarddiskVolume1\”,
“\\?\localhost\c$\”

 Is it a relative path?
▪ “../”, “..\”, with URL encoding, double URL encoding, or

Unicode encoding

▪ Other tricks (Code/FS dependent)
▪ Dot or Space after filename in windows

▪ Incorrect protections: Example: replacing “../” with nothing

 GleamTech FileVista v4.6:

 Bypassing protections for “../” & “..\” by using:

▪ “.. /” (“..%20/”) & “.. \” (“..%20\”)

Short Demo: File - YouTube

FileVista_DirTraversal.mp4
http://www.youtube.com/v/HjS6Pob5t34?version=3&hl=en_US&rel=0&vq=hd720

 Accessible via web directly?
 Examples:

 Mail attachments: Upload, Download

 Data Processing : e.g. resizing an image

 PHP temp files on File Upload

Old but still effective for some systems…
 SmarterMail File Upload Vulnerability:

 Temp Uploaded ASP file

Link: http://securitytracker.com/id/1013021

 MailSite Express File Upload Vulnerability:

 Temp Uploaded and then viewed file

Link: http://securitytracker.com/id?1015063

http://securitytracker.com/id/1013021
http://securitytracker.com/id/1013021
http://securitytracker.com/id/1013021
http://securitytracker.com/id?1015063
http://securitytracker.com/id?1015063

 Similar to other Web Apps Vulns…
 Impacts can be highly critical though!
 e.g.:
 Cross Site Request Forgery

▪ Upload a file on behalf of authorities

 Cross Site Scripting
▪ Can make a website vulnerable OR can be vulnerable itself!

 SQL Injection
▪ When the website uses a database system

 Denial of Service
▪ Consuming server’s hard drive? Processing a large image?

 And so on…

 Client Side Protections: Name and Extension

 It only makes the website more user friendly.

 It is not for security!

 Data can be manipulated by a web proxy as usual

 Server Side Protections – Proper ones!

 Inside the code (Internal)

 Outside the code (External)

Internal External
Content-Type (mime-type) Firewall: Request Header Detection

File Name and Extension Firewall: Request Body Detection

File Header (File Type Detector) Web Server Configurations

Content Format Permissions on File system

Compression (Image) Antivirus Application

Name Randomization Storing data in another domain

Storing files out of accessible web
directory

Storing files in the database

 Good to have it. But, no matter how good it
is, it can be bypassed:

▪ Different implementations of RFCs in web servers. e.g.:
▪ Using white space characters and CrLf in HTTP Header

▪ Using Multiple fake “Boundary” items

▪ Using “Transfer-Encoding: chunked” and obfuscating the body

▪ Different File Systems/Operating Systems features. e.g.:
▪ “test.aspx” = “test~1.asp” in Windows which supports 8.3

▪ Different web technologies features. e.g.:
▪ PHP converts “.” to “_” in the parameter name

▪ ASP converts certain UTF-8 characters to ASCII

 .htaccess, web.config, and so on:

 Overwrite their contents

 Create a new one in a new folder

 Use Windows 8.3 file names

 Other webserver configurations

 Use extensions that are not being blocked

▪ asa, cer, php3, php4, ashx, pl, cgi, shtml, phtml, …

 Try path traversal to move the uploaded file

 We don’t need bypass for file upload
 Write access in Upload directory is needed

 Webserver needs to be configured not FS

 Not having execute permission does not help!

 Write permission can be prohibited outside

 What about Temp/Real Time files/folders?

 Still bad if you can upload arbitrary files

 It is good to have this to reduce the risk

 AV only blocks malwares/viruses
 Web-shell can be obfuscated
 AV vulnerabilities can be exploited:

 e.g.: Sophos Vulnerabilities by Tavis Ormandy:

▪ 7th Nov 2012: http://secunia.com/advisories/51156/

▪ Just upload a file to execute your code

▪ In PHP, you just need to send your file to any PHP file!

http://secunia.com/advisories/51156/
http://secunia.com/advisories/51156/
http://secunia.com/advisories/51156/

 Good solution, hard implementation

 File Server must be isolated

 File Server must be hardened

 Subdomain can still be dangerous

 Reading/Setting cross subdomain cookies

▪ e.g.: “domain=.example.com”

 Phishing attacks

 Location in the request:

 File extension will change the “Content-Type”
 Can be easily manipulated by a web-proxy
 Mostly image uploaders are the victims

“Do Not Trust/Use Content-type!”

 ManageEngine Support Center Plus:

 Exploit-DB ID: 22040

 Bypass = “Content-Type: image/gif”

 MobileCartly 1.0:

 Exploit-DB ID: 20539

 Bypass = “Content-Type: image/gif”…

 First Step: What is File Extension in
“test.php.jpg”?
 “.php.jpg”?

 “.jpg”
 Next Step: Which part has validation?
 Filename or Extension or Both?

 What does it do with existing files?
 Logical flaws

 Denial of Service …

 White-list or Black-list?
 Check executable extensions
 “.php” is blocked, what about “.php3”,

“.php4”, “.phtml”, etc?
 “.asp” is blocked, what about “.asa” or “.cer”?
 What about client side extensions?

 .htm, .html, .swf, .jar, …?

 The most common bypass method in 2012!
 Webserver related (can be fixed in Apache)
 Apache common configuration:
 “file.php.jpg” served as PHP

 “AddHandler application/x-httpd-php .php”
▪ Better solution:

 IIS 6 useless feature:
 “file.asp;.jpg”  run as an ASP file

 “/folder.asp/file.txt”  run as an ASP file

 Normally when we have Regular Expressions
 Always try it!
 Code Example:

 Blacklist RegEx: “^\.php$”

▪ “file.php” != “file.PhP”

 “file.php3.jpg” != “file.PHP3.JpG”

 Example: eFront

 Exploit-DB ID: 18036

 Overwriting sensitive files is easy:

 “web.config” == “WEB~1.con”

 “default.aspx” == “DEFAUL~1.asp”
 Files without extensions are allowed?

 “.htaccess” == “HTACCE~1”

 End of filename - ignored characters:
 Trailing dot and space characters
▪ “test.asp …” == “test.asp”

 Sometimes when it saves a file:
▪ “test.php<>” == “test.php”

 NTFS Alternate Data Streams:
 “file.asp::$data” == “file.asp”

 “/folder:$i30:$Index_allocation” == “/folder”

 “.htaccess:.jpg”  make empty “.htaccess” ==
“HTACCE~1” …

 “file.php%00.jpg”

 It needs to be decoded

▪ Web server (name is in URL or code has
URLDecode)

▪ From client in “filename” section

▪ Depends on server side parser

 Height/Width of image files?
 Simple Example: Comments in a jpeg file:

 Detecting malicious code by using a pattern?

 Too many vectors and obfuscation techniques

 False/Positives

 Binary files

 Different encodings

 Performance issue

“This protection method is vulnerable!”

 Does it remove the meta-data?
 Always scrambles the input?

 What about small data?

 Malicious code can be produced by the
compression out of dust!

 Source: http://www.idontplaydarts.com

 A compressed .png file can contain PHP code!

 PNG Image Compression

PNG with PHP
code!

http://www.idontplaydarts.com/
http://www.idontplaydarts.com/

 Harmless Text…

 Gzip Compression:

 Now, we have a PHP backdoor:

 <?=$_GET[0]($_POST[1]);?>

 What about Extensions? Double Extension?
 Randomization Algorithm

 Predict the names (when file is hidden)

 Does it use original name?

▪ Causing error by invalid characters

▪ Long strings can cause delays

 Directory Traversal to make it accessible?
 Remember FileVista Issue?

 Still can be used in LFI
 How will users see them?
 You need to proxy them
▪ Performance issue

▪ Local File Disclosure by a Directory Traversal

▪ Loading unauthorized contents/files

▪ Local/Remote file inclusion issue

▪ And so on

 SQL Injection
 Still can create temporary files
 Performance

 In upload and download

 Files in the database need more space

 Can lead to DoS

 What if you want to migrate to another app?

 File duplication issues
 Delay problems
 Good for LFI and DoS!

 Special file formats
 Compressed files
 XML files

 Bad programming
 Using “include” function to show an image
 Replacing bad characters/extensions with nothing:

▪ “file.p.phphp”  “file.php”
 And so on

 In Apache (if we are in “/www/uploads/” dir):

 Tested in Windows:

▪ filename = “.” or “…” make “/www/uploads” file

 In NTFS, “…:.jpg” makes “…” file

 Removable only via command line: “del *.*”

 By misconfiguration, “file.jpg” can run as
PHP:

 “/file.jpg/index.php”, check this too!

 Many developers use it as a base! O_0
 The issues are:

 It uses “Content-Type” as well as the extension!

 No protection for double extensions

 Possible Cross Site Scripting

 Cross Site Request Forgery

 Lack of authentication

 Other online examples have similar issues

 “.asptxt” is a valid extension
 Dangerous characters are converted to “_”
 However, file duplication is an exception!
 Thanks to Mostafa Azizi (@0daynet) for this bug

 “file.asp;txt”  will be saved as “file.asp_txt”

 Again “file.asp;txt”  will be saved as
“file(1).asp;txt”  IIS6 useless feature shines!

 But, we can even use Null Character here to have
“file(1).asp” on the server!

Short Demo: File - YouTube

FCKEditor_2_6_8_FileUpload.mp4
http://www.youtube.com/v/1VpxlJ5jLO8?version=3&hl=en_US&rel=0&vq=hd720

 There is a logical flaw in CKFinder ASP version.
 Uploading “Con.pdf.txt” kills the server:

 CKFinder renames an existing file to “file(1).ext”

▪ If “file(1).ext” was taken, it will try “file(2).ext”, and so on

 CkFinder is OK with multiple valid extensions

 “CON” is a forbidden name in Windows

 CKFinder thinks “Con.pdf.txt” is taken,

▪ It tries “Con.pdf(1).txt” which is forbidden too!

▪ “Con.pdf(2).txt” … “Con.pdf(MaxInt).txt”

 This can kill the server!

 Do you have enough internal and external
protections?
 Are they bypassable? Try it yourself!

 Can you host malwares, adult or illegal
content for free?!

 Do you have a monitoring system to report
newly uploaded/modified files?

 Are all the libraries and modules up to date?
 Upload a safe webshell and try to see how

much access it has!

File Managers include different modules:
 Upload File
 Create File/Directory
 Edit File
 Rename File/Directory
 Delete File/Directory
 Move File/Directory
 Compress/Decompress Modules
 Image converting/resizing modules
 Download/View File
 Browse Files/Directories
 Change Permissions
More functionality  Possibility of more vulnerability

 Attack vectors cheat sheets
 Protection methods cheat sheets
 More OWASP ESAPI for file managers
 Payloads to make the testing automatic
 Better checklists for Web Developers &

Webmasters.

Any Question?

 A BIG thank you to everyone

And, to the people who helped me to prepare this
talk.

 Here are my contact details:

 Twitter: @IRSDL

 Email: IRSDL at Yahoo dot com

